1,358 research outputs found

    An Economic Feasibility Assessment of Autonomous Field Machinery in Grain Crop Production

    Get PDF
    A multi-faceted whole farm planning model is developed to compare conventional and autonomous machinery for grain crop production under various benefit, farm size, suitable field day risk aversion, and grain price scenarios. Results suggest that autonomous machinery can be an economically viable alternative to conventional manned machinery if the establishment of intelligent controls is cost effective. An increase in net returns of 24% over operating with conventional machinery is found when including both input savings and a yield increase due to reduced compaction. This study also identifies the break-even investment price for intelligent controls for the safe and reliable commercialization of autonomous machinery. Results indicate that the break-even investment price is highly variable depending on the financial benefits resulting from the deployment of autonomous machinery, farm size, suitable field day risk aversion, and grain prices. The maximum break-even investment price for intelligent, autonomous controls is nearly US$500 000 for the median days suitable for fieldwork when including both input savings and a yield increase due to reduced compaction

    PPARĪ³2 Regulates a Molecular Signature of Marrow Mesenchymal Stem Cells

    Get PDF
    Bone formation and hematopoiesis are anatomically juxtaposed and share common regulatory mechanisms. Bone marrow mesenchymal stromal/stem cells (MSC) contain a compartment that provides progeny with bone forming osteoblasts and fat laden adipocytes as well as fibroblasts, chondrocytes, and muscle cells. In addition, marrow MSC provide an environment for support of hematopoiesis, including the development of bone resorbing osteoclasts. The PPARĪ³2 nuclear receptor is an adipocyte-specific transcription factor that controls marrow MSC lineage allocation toward adipocytes and osteoblasts. Increased expression of PPARĪ³2 with aging correlates with changes in the MSC status in respect to both their intrinsic differentiation potential and production of signaling molecules that contribute to the formation of a specific marrow micro-environment. Here, we investigated the effect of PPARĪ³2 on MSC molecular signature in respect to the expression of gene markers associated exclusively with stem cell phenotype, as well as genes involved in the formation of a stem cell supporting marrow environment. We found that PPARĪ³2 is a powerful modulator of stem cell-related gene expression. In general, PPARĪ³2 affects the expression of genes specific for the maintenance of stem cell phenotype, including LIF, LIF receptor, Kit ligand, SDF-1, Rex-1/Zfp42, and Oct-4. Moreover, the antidiabetic PPARĪ³ agonist TZD rosiglitazone specifically affects the expression of ā€œstemnessā€ genes, including ABCG2, Egfr, and CD44. Our data indicate that aging and anti-diabetic TZD therapy may affect mesenchymal stem cell phenotype through modulation of PPARĪ³2 activity. These observations may have important therapeutic consequences and indicate a need for more detailed studies of PPARĪ³2 role in stem cell biology

    Neutron Acceleration in Uniform Electromagnetic Fields

    Full text link
    The question as to whether neutron acceleration can occur in uniform electromagnetic fields is examined. Although such an effect has been predicted using the canonical equations of motion some doubt has been raised recently as to whether it is in principle observable for a spin 1/2 particle. To resolve this issue a gedanken experiment is proposed and analyzed using a wave packet construction for the neutron beam. By allowing arbitrary orientation for the neutron spin as well as for the electric and magnetic fields a non vanishing acceleration of the center of the neutron wave packet is found which confirms the predictions of the canonical formalism.Comment: 11 page

    Thermodynamic basis of the concept of "recombination resistances"

    Full text link
    The concept of "recombination resistance" introduced by Shockley and Read (Phys. Rev. 87, 835 (1952)) is discussed within the framework of the thermodynamics of irreversible processes ruled by the principle of the minimum rate of entropy production. It is shown that the affinities of recombination processes represent "voltages" in a thermodynamic Ohm-like law where the net rates of recombinations represent the "currents". The quantities thus found allow for the definition of the "dissipated power" which is to be related to the rate of entropy production of the recombination processes dealt with.Comment: Submitted to Phys. Rev.

    Citation Networks in High Energy Physics

    Full text link
    The citation network constituted by the SPIRES data base is investigated empirically. The probability that a given paper in the SPIRES data base has kk citations is well described by simple power laws, P(k)āˆkāˆ’Ī±P(k) \propto k^{-\alpha}, with Ī±ā‰ˆ1.2\alpha \approx 1.2 for kk less than 50 citations and Ī±ā‰ˆ2.3\alpha \approx 2.3 for 50 or more citations. Two models are presented that both represent the data well, one which generates power laws and one which generates a stretched exponential. It is not possible to discriminate between these models on the present empirical basis. A consideration of citation distribution by subfield shows that the citation patterns of high energy physics form a remarkably homogeneous network. Further, we utilize the knowledge of the citation distributions to demonstrate the extreme improbability that the citation records of selected individuals and institutions have been obtained by a random draw on the resulting distribution.Comment: 9 pages, 6 figures, 2 table

    Chiral Symmetry Versus the Lattice

    Get PDF
    After mentioning some of the difficulties arising in lattice gauge theory from chiral symmetry, I discuss one of the recent attempts to resolve these issues using fermionic surface states in an extra space-time dimension. This picture can be understood in terms of end states on a simple ladder molecule.Comment: Talk at the meeting "Computer simulations studies in condensed matter physics XIV" Athens, Georgia, Feb. 19-24, 2001. 14 page

    Connectivity of Growing Random Networks

    Full text link
    A solution for the time- and age-dependent connectivity distribution of a growing random network is presented. The network is built by adding sites which link to earlier sites with a probability A_k which depends on the number of pre-existing links k to that site. For homogeneous connection kernels, A_k ~ k^gamma, different behaviors arise for gamma1, and gamma=1. For gamma<1, the number of sites with k links, N_k, varies as stretched exponential. For gamma>1, a single site connects to nearly all other sites. In the borderline case A_k ~ k, the power law N_k ~k^{-nu} is found, where the exponent nu can be tuned to any value in the range 2<nu<infinity.Comment: 4 pages, 2 figures, 2 column revtex format final version to appear in PRL; contains additional result
    • ā€¦
    corecore